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LINEAR THEORY OF A LARGE VOLUME, HIGH POWER GYRO
TRAVELING WAVE AMPLIFIER

1. Introduction

This paper discusses a new concept for a high power millimeter
wave gyro amplifier. While it is potentially viable at any short
wavelength, we particularly focus on 94 GHz, the clearest part of the
atmospheric propagation window.  Also we envision this concept as
a rf source for a large, fixed facility such as the Haystack or
Kwajalein Radar facility, each managed by Lincoln Laboratory. Both
of these antennas are qualified for radiation at 94 GHz. The former
could accept an rf source of the size we propose now. For the latter,
some reengineering of the facility would have to be donel

The basic source concept is shown in Fig.(1), and a modified
version is shown in Fig.(2). Instead of a waveguide configuration, it
utilizes Gaussian radiation beams directly. This is advantageous,
particularly for the projects of interest to Lincoln Laboratory. They
have developed a number of high power components for Gaussian
beams which we will discuss shortly. While their inventions were
intended for the beam transmission system, there is no reason they
cannot be used directly in the amplifier itself.

As an alternative configuration one could also use a corrugated
waveguide with mitre bend reflectors, shown in Fig. 3, or with U
bends (not shown). This corrugated waveguide supports TEM modes
having very low loss. The waveguide is shown with large gaps near
the point of electron beam traversal. These large gaps are to
eliminate cutoff modes of the waveguides at these locations, as these
would be the most likely competing modes. Since the transverse
mode structure in both the quasi-optical and corrugated waveguide
configurations are each nearly Gaussian in structure, we analyze here
the beam interaction with Gaussian modes.

The configuration in Fig.(1) has a radiation field bouncing
between mirrors in a serpentine path going from right to left. A
gyrotron electron beam (i.e. one with transverse energy) propagates
through the center of the radiation spot on the vertical radiation legs
in the figure. As it propagates, it gives energy to the fields in a
modified version of the gyro traveling wave amplifier (TWA)
interaction. This configuration was motivated by earlier work at NRL
on a gyroamplifier in a folded waveguide system2, shown
schematically in Fig. (4). However in the waveguide system, even at
35 GHz, the waveguide is quite small in the transverse direction,
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thereby limiting the power capability. Our configuration is also
motivated by other work at NRL on the quasi-optical gyrotron3:4,
shown schematically in Fig.(5). Here the gyrotron cavity was a Fabry
Periot resonator oriented perpendicular to the magnetic field. As the
beam traverses the resonator, it gives energy to the fields via the
conventional gyrotron interaction.  Recently it was also poinfed out
that the MIT group has also analyzed a configuration similar to this.>
Their analysis relied mostly on particle simulation. This work here
complements that by offering analytic theory.

Experience in running this device over about 5 years has
shown that it operates basically as a gyrotron, but at somewhat less
efficiency6.7. This can be partially compensated by the relative ease
of incorporating a depressed collector, due to the fact that the beam
and radiation propagate orthogonally. The best results of the
experiments so far show an efficiency of 20%, which has been
increased to 30% with a very simple single stage depressed collector.
The quasi-optical gyrotron has a high axial mode density, but only a
single transverse mode has ever been observed. Recent work has
shown a number of ways in which the device can operate efficiently
in a preselected axial mode. One of the ways has been to use a
prebunching cavity. This prebuncing cavity is also shown in Fig.(5).
It was powered by an extended interaction oscillator (EIO) at 85 GHz.
The prebunched beam either excited the main cavity as an amplifier
for the case where the main cavity was stable, or else controlled it as
a phase locked oscillator for the case where the main cavity was
unstable, but not very far above threshold. This amplifier should be
capable of high average power, since the size of all components are

large.

It is important that amplifier operation has been demonstrated
on the quasi-optical gyroklystron. Nevertheless the device is not
suitable as an amplifier if reasonable bandwidth is desired. Since the
cavity mode has very high Q the bandwidth was only a few MHz.
However with the experience obtained in the quasi-optical gyrotron
and gyroklystron, it is natural to propose quasi-optical gyrotron
traveling wave amplifier for the case where reasonable bandwidth is

desired.

The configurations shown in Figs. (1 and 2) appear to have
several advantages over waveguide configurations.  First of all, the
mode density is low. Assuming that the region outside of the ray



path uses millimeter wave absorbers, the only allowed modes are the
modes of interest -themselves. We envision a forward wave
interaction.  Since- this mode cannot be absolutely unstable, it cannot
oscillate without a source to drive it. However the backwards mode
can also propagate, and this might be absolutely unstable depending
on the current and length of the system. Typically in such a case,
one either designs the amplifier short enough to be below oscillation
threshold, or else uses severs in the circuit. As we will see, another
possibility in this configuration is the use of a high power Gaussian
mode circulator, developed at Lincoln Laboratory.

A particular advantage of the configuration proposed is that
there is no zero group velocity mode. In traveling wave amplifiers, it
is almost always the cutoff mode that interferes with operation by
breaking into spontaneous oscillation. In the corrugated waveguide
configuration of Fig. (3), the portion of the guide in which a cutoff
mode is most likely to be excited, has been removed. Furthermore,
we will also see that for electron beam energies of interest, if the
amplifier is stabilized at a cyclotron harmonic n, it is also stabilized
for all other harmonics p as long as p>n. Finally, it is clear that in the
quasi-optical gyro TWA, the sizes of all components are relatively
large, meaning that the power handling capability is also. The
development of such an amplifier with peak power of 100 kW and
average power in excess of 10 kW appears to be achievable.

Let us now continue by discusing two inventions developed at
Lincoln Laboratory8.9 which could render simpler the development
of the quasi-optical gyro TWA. The first is the clam shell reflector
shown in Fig. (6). When a Gaussian beam reflects obliquely from a
spherical mirror, there is some depolarization. By utilizing the
double mirror system shown (the clam shell), the depolarization in
the first mirror is reversed in the second, so the polarization is
preserved. Each mirror in Fig. (1) might be a clamshell; alternately,
if the clam shell mirrors can be separated, the two adjacent mirrors
in each horizontal leg can be a clam half of a clam shell.

The second is the quasi-optical millimeter wave circulator
shown in Fig. (7). It utilizes a ferrite to rotate the polarization of the
radiation 450. Typically a permanent magnet is used with a field just
large enough to drive the ferrite into saturation. Here the losses in
the ferrite are minimized. However it is also possible to use the main
field of the gyro - TWA, although this is a much larger field than




would ordinarily be used. These ferrites are typically very lossy at
the cyclotron resonance, but not so lossy at other frequencies!.
Particularly, if the radiation is at twice the cyclotron frequency, the
losses in the ferrite are not that large. The circulator can then be
used in the circuit, for instance along the horizontal legs of Fig. (1) to
prevent the backward wave from propagating through the system.
It can be used -as an alternative to the sever, but with the advantage
that one does not have to worry about dumping the partially
amplified radiation ‘somewhere in the tube (ie at the sever).
Furthermore, if the gyro TWA operates at the harmonic, the
circulator can not only decouple the backward wave, but also provide
strong dissipation at the fundamental.

This paper analyzes the linear theory of the quasi-optical gyro
TWA. In Section 2, the general formalism is introduced. Section 3
calculates what is essentially Ee J for the configuration. This quantity
is needed to calculate the linear dispersion relation. Section 4
calculates the instability condition. Basically this calculates the
maximum length, either for the entire system or between severs or
circulators. Section 5 gives a few examples and results. In a sense
the quasi-optical gyro TWA is the complement of the waveguide
system. Where the latter is fighting large sizes, the former is fighting
large size. Typically we find system lengths of half a meter to a
meter and magnet bores of 4 to 6 inches. The appendix shows that
in the linear regime, the klystron effect, that is the bunching of the
beam in one vertical leg, followed the extraction in the next, is
negligibly small.



2. General Formulation

In Fig. (1), let the plane of the paper be the yz plane with the
constant magnetic field being in the z direction. The natural
polarization for the electromagnetic wave in a gyrotron configuration
is then the x direction. Maxwell’s equations for this component
reduce to

VxVxEyiy +(1/c)2ixd2Ex/0t2 = -ix(4w/c2)dlx/ot (1)

The configuration as shown in Figs.(1) is periodic with periodicity
length L in the z direction, and confined radially to be within the
outer conductor. Therefore,by Floquet's theorem, all quantities (E,J
etc) can be expressed as a periodic function of z times an exponential
exp ikz. Further, we imagine that the ray bounces around in the
periodicity cell along some ray path, the distance along which is
denoted by 1. If we assume the wave propagates strictly in one
direction, say to the right in Fig. (1), neglect diffraction, and the
coupling to the backwards wave, Eq. (1) may be reduced to a single
first order scalar equation

o0Ex/ot + COEx0l = -27lx (2)
and
Ex = P(y,z) exp i(kz-ot) (3)

where P(y,z) is periodic in z with periodicity length L. Now say that
the actual ray path the radiation traverses within a periodicity cell
has length A. Letr, be the spatial variable describing the radiation
profile perpendicular to 1. Then let us take as an approximation for
P, the function

P = R(ry) expi[kLl/A - kz] (4)

Note that as the wave propagates a distance A, z advances a distance
L so that P is periodic in z with periodicity length L. For the case we
will consider here, R is a Gaussian with spot size ro,

R(ry) = exp -(r/ro)? (5)



Let us now stipulate that the electric field Ex can be
decomposed into a summation of orthogonal functions

Ex = Zi oiPi (6)
For the normalization we take
Jd3r Pi*Pj = nro2A (7)

where in the three dimensional spatial integral above, the z integral
is taken only over a length L. Let us further take Pj as being given
by Eq.(4). If we assume that in the decomposition of the electric
field, oy is nearly unity and all other aj’s are small, we can multiply
Eq.(2) by P1*, integrate over space and find

L
i -ckL/A) = (rro2A) 12w Jodzfd2r JxP1* (7)

This then constitutes the dispersion relation. To complete the
calculation, we must compute the right hand side, which is done in
the next section. Notice that in the limit of zero current, the local
wave number, kL/A is smaller than the wave number k
characterizing the Floquet solution. This is so that when z changes by
L, or 1 changes by A (which is longer than L), the phase change is the
same. Also note that because the k value is much larger than 2rn/L,
it is obviously not restricted to the first Brillouin zone (indeed there
is no reason for the k to be in any particular zone). The index of the

Brilloun zone is given approximately by wA/2rnc.



3. Calculation of JP1*Jx

To proceed, we calculate fP1*Jy for the configuration. We will
calculate this only for the configuration of Fig.(1), and later will
simply state the results for Fig.(2). In each periodicity length the
electron beam the intersects the radiation twice, once going up, and
once going dowh. In each vertical leg, the electric field is given by

E = Eoixexp-(r/ro)zexpi((-l)mky—cot+d>m) (9)

where (-1)m accounts for the change in direction in the mth vertical
leg, and the @y, accounts for the phase -change from one leg to
another. Let us say that the distance between up and down leg is N.
Then we can say '

E=Eyexpi(ky-ot) + Eqexpi(-ky-wt+®) (10)
where
Ey = Eoexp-(z/10)2, Eg = Eoexp-((z-N)/10)2 (11)

In Egs.(10 and 11), it is now understood that E is in the x direction, z,
the distance along the magnetic field on which the beam propagates
now replaces the transverse variable r.

Expressing the electric field on the two vertical legs in the form
of Eq. (3 and 4), and Fourrier decomposing the periodic function P,
we find

E(y,2) = ZaVxEo(ro/L)expl-(k+qn)2ro2/4lexpi(k+qn)z

(12)
x{exp iLky/A + exp i[®-(k+qn)Plexp-iLky/A}expi(kz-wt)

where qn = 2nn/L. We now use this electric field in the linearized
Vlasov Equation to calculate the perturbed distribution function and
from it, the perturbed current. The calculation reported here closely
parallels the analysis of Vomvoridis et alll. There the independent
variables were the guiding center variables, related to the normal
Cartesian variables by




Px=P.LC°S(QmZ/Pz +0) (a)
py =pisin(Qmz/pz +¢) (b) (13)
X =Xg + (pL/mQ)sin(Qmz/pz +9¢) (¢)
y = yg (p1/mQ)cos(Qmz/pz +¢)  (d)

Then the linearized Vlasov Equation, in these variables becomes
(9/9z -iymw/p)f = G(z) (14)
where |
G(z) = (ymeE(z)/@p,){20p cos(Qmz/pz +6)3fo/op.2) (15)

where f, is the unperturbed distribution function and vyis the

relativistic factor and Q is the cyclotron frequency. In Eq.(15) we
have included only the velocity gradient terms, and neglected the
terms arising from gradients in xg and yg. These typically give small
corrections, and have been discussed in Ref.(10). The perturbed
distribution function f is then given by _

f = expliymwz/pz] JZ dz'exp[-iymwz'/p,]G(z) (16)

From the perturbed distribution function, we calculate the
perturbed current

Jx =-eld3p (px/my)f - an
The quantity to calculate then is the integral of P1*Jx over the
transverse cross section and over a periodicity distance L. Without

going into the details of the calculation (it is quite analogous to that
in Ref.(10)), we find that

[P1*] = -Ald2rgd3pZns [exp-(k+an)21o2/2] (21's2(LkpLymQA)
x20p 1 2/pz}9fo/dpL2/ilk+qn + (sQm - Ym®)/pz] (18)

where A = nye2Eoro2/wL2. Now for the distribution function, take

fo =1 {g(rg)my/2nepz) (P12~ PLo®) 8(Pz-Pzo) (19)



where Iis the beam current and g(rg) is the distribution of guiding
centers, normalized so that Id2rgg(rg)=1. Notice that the distribution
function is assumed to be unperturbed by its interaction with the
radiation upstream from the periodicity length considered. This is
examined more fully in the appendix where it is shown that this
interaction (a klystron type interaction) has a negligible effect, at
least in the linear regime.

Consistent with our assumptions of neglecting the various
derivatives with tespect to rg in the derivation of Jx, we assume that
the variation of g(rg) is small over distances compared to k-1. To do
the integral on the right hand side of Eq.(18), we perform a partial
integration over pi2, and keep only those terms which arise from a
differential of the resonant denominator. These terms are the ones
which have that denominator raised to the second power, and are the
largest terms if the wave frequency is nearly equal to the cyclotron .
harmonic. To continue, we approximate the effect of thermal spread
in the beam. For the distribution function, let us assume that the
beam energy (characterized by yor the magnitude of the momentum
p) is the same for all particles, but there is a distribution of pitch
angle o (pz/p = cos a). This pitch angle spread, assumed to be small,
is characterized by 8a. We consider the effect of pitch angle spread
only in the resonant denominator. For small 8o this is the only place
where its effect can be significant. The integral over p; can be done
analytically if the distribution of pitch angle is approximated by a
Lorentzian :

f(a) = {nl(o—00)2 + (Ba)21}-1 (20)

In this case the distribution of p, is also Lorentzian centered at pzo
and having thermal spread pioda. While we cannot use the ,
Lorentzian to accurately calculate the effect of a pitch angle spread, it
should give a reasonable extimate of when the spread has a
significant impact on the growth rate.

If we assume that the cyclotron harmonics are all decoupled,
then the dispersion relation can be written in the form




-@A/cL +k = Xy Hg [1-ip180/p]-2 exp-0.5[(qn+k)10]?
x[k + Gn + m(sQ-yw)/(pz-ip18a)]-2 (21)

where to simplify the notation, in Eq. (21) we have deleted the zero
subscripts on the momentum variables. Here,

H, = 16yewp.21 J's2(Lkpi /ymQA) /(pz3 ¢3L2) (22)

This then summarizes our result for the configuration of Fig 1. For
that in Fig 2, an analogous calculation gives the result

-wAfcL +k = Xp [Hg'/sin2p] [1-ip80/pz]-2 (23)
xexp-0.5[(qn+k)ro/sin2p]2x[k +acosp/c + qn + m(sQ-y®)/(pz-ip13a)]-2

where B is the angle of the ray path to the horizontal in Fig 2 and

Hy' = 16yewpy 2 I's2(Lkp,sinpym@A) /(pz3 c3L2) (24)

The summation in JP1*Jx is a summation over various spatial
harmonics of the mode structure, each spatial harmonic having a
different resonant denominator. As long as the spatial growth rate
Imk is much less than 2r/L, the spatial harmonics can be considered
one at a time, the spatial harmonic with k=-qn being the dominant
one. Ultimately, these spatial harmonics become small due to the
cutoff of the Gaussian exp-(k+qn)2ro2/2. Hence the amplifier can
typically operate at some small number of spatial harmonics before
the interaction strength becomes negligibly small. Thus the fact that
the system is periodic with periodicity length L is extremely
important in that it breaks the eigenfunction into this summation
over space harmonics. These space harmonics are sufficiently
separated in wave number that the interaction effectively proceeds
with only one of them at a time. This greatly increases the strength
of the interaction in the same way that a monoenergetic beam
interacts more strongly with a wave than does a thermal
distribution. It is not difficult to show that for a single resonator, the
summation over k becomes an integral, and the conventional
expression (with no resonant denominator) is obtained.

10



In each of these, the assumption is that the radiation mode and
beam each propagate from left to right. This is the usual forward
wave amplifier situation. For the case of the radiation mode
propagating from right to left, the backward wave case, the
dispersion relations are the same except that the sign of the k term
on the left hand side becomes negative. These simple dispersion
relations then summarize the basic theoretical results obtained up to

now.

11




4. Instability condition

In a traveling wave amplifier, the forward wave interaction
cannot be absolutely unstable, but the backward wave can be We
calculate the stability threshold, paralleling an earlier calculation!2,
We only consider the worst case of zero thermal spread, and only the
fundamental cyelotron frequency. Then the backward wave
dispersion relations, taking only a single spatial harmonic, derived in
the last section all had the form

k(k-A)2 = -Ko3 (25)

where A and K, are both real. For the beam energies we consider, Ko
decreases as a function of cyclotron harmonic number. As we will
see, the stable length of an amplifier is expressed as coefficient to be
derived, divided by Ko. Therefore, all cyclotron harmonics above n
will be stabilized if harmonic n is itself stabilized. This important
result for the quasi-optical gyro TWA follows directly from the very
simple nature of the spectrum, especially the absence of cutoff
modes. In other gyro TWA experiments, important competing modes
have turned out to be cutoff modes at higher harmonics.

Consider the amplification as arising from the coupling of a
beam mode with amplitude W; and a radiation mode with amplitude

W,. The system is described by the two equations

(k-A)2W1 = -Ko?W2 (a)
(26)

kW2 =KoW1 (b)

This is cubic system, so there are three generally complex roots
denoted ki, kz and k3. The coefficients of the three exponentials are

denoted &1, &2, and E3. Then consider a system of length ¥. The beam
mode convects from left to right, entering at z=0. The radiation mode
convects from right to left, entering the system at z=¥. The condition
for instability is then that if no beam mode enters at 0, and no
radiation mode enters at ¥, there will be a radiation mode of
amplitude Wy exiting the system at z=0. Since the beam mode is
described by a second order equation, the condition for no beam
mode at the entrance means that both W; and its derivative vanish

12



at z=0. Regarding the exponential as solutions for W1, we find that
the equations for -the three mode amplitudes are

0=81+8&+8&3 (a)
- (27)

0= ik1§1+_‘ik2§2 + ik3&3 (b)
Woo = (Ko/k1)E1+ (Ko/k2)E2 + (Ko/k3)E3  (c)

The condition for instability is then that the amplitude of W2 at z=%¥
vanishes, or

[P

(E1/k1)expik1¥ +(E2/k2)expika¥ +(&3/k3)expiks¥ =0 (28)
Solving for the coeffipients, the instability condition becomes
[(k3-k2)/k1lexpik1¥ + [(k1-k3)/kz2]expiko¥
+ [(k2-k1)/k3]lexpiks¥ =0 (29)

If ¥ is very small compared to the reciprocal of the k’s, which in turn
scale with Ko, clearly there is no solution to Eq.(29) and the system is
stable. As ¥ increases, the oscillatory nature of the exponentials will
allow the summation to equal zero. At some length ¥,, there will
first be a value of A=A, for which the summation vanishes. At this
point there can be a solution of a non zero outgoing radiation mode
with no inputs of either radiation or beam mode. The Ao then
determines the frequency of the instability, and the ¥o determines
the maximum length (or beam current) of the stable system.

A numerical solution of the dispersion relation gives the result
Ao= -3.003/Ko (a)

' (30)
¥, = 7.68/K, (b)

13




5. Results and Discussion

Let us begin by considering a possible configuration for both
the quasi-optical and corrugated waveguide configuration. For
normal incidence, if the mirror has radius of curvature Rm, and half
the separation between the mirrors is Ly, then the radiation spot size
at the center is-given by!3

ro = [ALy(Rm/Ly - 1)/2/x]1/2 31)

where A is the radiation wavelength. The spot size at the mirror then
turns out to be

Tom = [XLy(Rm/Ly - 1)'1/2/3]1/2 (32)

If we take a spot size 1o of 0.5cm, a wavelength of 0.3 cm, and Ly of 3
cm, we find that the mirror radius Rp is about 5 cm and the spot size
at the mirror is about .62 cm. To reduce diffraction loss, the mirror
size should be a radius of about 1.5 cm. Since the mirror is tilted at
450, the total half length of the mirror in the vertical direction is
about 2 cm, so the vertical ray path is about 10 cm. Hence a magnet
bore of roughly 4 inches should be sufficient to hold the tube. If the
facing mirror edges are two centimeter apart, the horizontal length of
the ray path is L=10 cm, and the total ray path within the periodicity

cell is A = 22 cm.

The corrugated waveguide propagates TEM modes with Ex
proportional to Jo(2.4r/a), with very low loss. If this mode is
decomposed into a summation of Gaussian modes with r, = 0.64a,
then about 98% of the poower is in the fundamental Gaussian
model4. Thus the Gaussian mode is an excellent approximation to
the field in the corrugated waveguide as well. For this case an
important consideration is the loss on transiting the gap and on .~
reflection at the mitre bends. According to Doane and Moeller15.16
the loss on transiting the gap is given by

Gap Loss (db) = 1.7 [Q)/2a2]3/2

(33)
Mitre Bend Loss (db) = 0.85 [A/a]3/2

14



where a is the waveguide radius and Q is the gap space. For our case
of A =0.3 c¢cm, a waveguide radius of 1.5 cm and a gap length of also
1.5 cm, we find that there is a 1.2% loss at each gap and a 1.7% loss at
each mitre bend. Since there are 2 gaps and 4 mitre bends in each
periodicity length L, there is about a 9% loss in the periodicity cell.
This loss is only loss from the TEM mode; much of the lost power is
still bouncing atound the waveguide. If the wave amplifies strongly
from one periodicity cell to the next, the output radiation should be
about 90% in the desired mode.

Now let us evaluate the growth and bandwidth from the
dispersion relations calculated in Section 3. We consider only the

case where the space harmonics decouple from one another, so that
the beam interacts with only one of them. The use of a single spatial
harmonic itself puts a limit on the bandwidth which can be '
accurately calculated. -Since k = wA/cL, and a change in k of 2n/L
brings us to the next spatial harmonic, the maximum accurate
bandwidth we can calculate with a single spatial harmonic is about
1.5 GHz for the parameters specified.1.5 GHz.

If we define
K=k- wA/cL

and assume, strictly for simplicity sake that the cyclotron frequency
corresponds exactly to cLqn/A, and define ® = sQ/y +8w, where s is the
cyclotron harmonic, we find that the dispersion relation for a cold
beam is

K[K-AJ]2 =K¢3 (34)

If both K and A are scaled with Ko, then K/K, is a function of only the
single parameter A/Ko. A numerical solution for the fastest growing
root is shown in Fig.(8). The minimum growth length turns out to be
about 1.2/K,.

Let us consider an interaction at the cyclotron frequency for a
configuration like that shown in Fig.(1). In this case, we find that
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Ko3 = [4ylep)2w]/[pz3c3L2] (a)
' (35)

A = [A/cL -ym/(pz-ip18a)]d® (b)

where we have actually included the effect of the thermal spread in
the resonant denominator.  Let us consider a particular beam for
this configuration. Take an energy of 100 kV, a value of tan a of 1.5
and no thermal spread. This is a fairly high value for an amplifier
configuration. However our hope is that this configuration will be
much more stable than a waveguide configuration, for which such a
high value of py/p; would almost surely be unstable. Then if o

=6x1011 s-1 we find that =
Ko3 (cm3) = 3.2x10-2 [I(Amps)/LZ(cmZ)] (36)

Thus if we consider a beam of ten amps and L=10 cm, the minimum
growth length is about 8 cm, and maximum stable length is about 60
cm. One real advantage of the configuration of Fig.(1) is that it is not
very sensitive to beam thermal spread. As is apparent from
Eq.(35b), the condition for neglect of thermal spread at the band

center (8w = 0) is
pz >> p.Lda (36)

a condition not very difficult to satisfy for typical gyrotron beams.

As 8o increases however, the effect of thermal spread becomes more
pronounced because of its contribution in the resonant denominator.
As a function of 8 the condition for the neglect of thermal spread is

da dw/vy << Ko (37)

For the beam parameters we have chosen, and 8w chosen to be 2n
times 1.5 GHz, we see that the maximum allowed angular spread is
about 10-! radians.

Let us now calculate the bandwidth, for the cold beam, in the
linear regime. Imagine that the input power is 100 W and the
output power is 105 W, so the power gain is a thousand. This is
about 3.5 e folds in amplitude. At the band edge, the power is down
by a factor of 2, or the amplitude by factor of 1.4, (ie exp0.3). From
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the graph in Fig.(8), this gives a spread in A/K, of about 2. For the
parameters chosen this means a bandwidth of about 1.5 GHz, the
maximum accurate bandwidth. Thus a more accurate calculation of
the bandwidth must involve the calculation of the simultaneous
interaction of several spatial harmonics and thermal spread.

At the cyclotron harmonic, for the same system except now a
beam energy of 150 kV, we find that Ko3 is smaller by about a factor
of 0.28, so the minimum growth length now turns out to be about 12
cm. The total length must still be below that determined for the
cyclotron frequency instability however, or else severs or directional
couplers would have to be used.

Finally, let us consider the configuration of Fig.(2). Here,
interaction strengths and bandwidths are somewhat larger, and
required magnetic fields are somewhat lower, because of the Doppler
shift provided by the beam's velocity parallel to the direction of
propagation. However this seems to be counterbalanced by the fact
that the beam requirements are much more difficult to achieve.
From Eq.(23), the requirements on beam thermal spread are given
by

Kpz >> pida(w/c)cosB (38)

This is a much more difficult condition to satisfy. For the beam
parameters we have been taking, this would mean an a spread of
about a percent or less.
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Appendix  The Effect of Prebunching in the Linear Regime

Here, we consider the effect on Pi*J4 from the the upstream
periodicity elements. That is in Sec. 3, when calculating P1*Jx, we
assumed that the input distribution function was a delta function in
pL, Pz, and had uniform distribution in azimuthal angle ¢. However
actually, the beam, by the time it enters the periodicity unit in
question, has passed through all of the periodicity units upstream.
Thus the distribution function is actually not a delta function, but
must also reflect the interaction with the upstream cavities. Here we
consider the effect of this interaction in the linear regime. We show
that the effect is very small compared to those retained in Sec.3.

We only consider the effect from the nearest upstream
periodicity unit, and also consider only the effect of prebunching
from that part of the radiation going in the same direction in y in
each unit. As we will see, there are phase averages, which nearly
vanish, involved in the integral of P1*Jx calculated on the radiation
going up in y, resulting from the prebunching of the electron beam,
in the nearest upstream periodicity unit, from the radiation going
down in y.

One can integrate the linearized equation for py through the
upstream radiation field and find that the wave going in the positive
direction in y gives the the ith electron of the beam a change in py

given by
Apli= [VreEqro/2mv;] cos(wyilc - ot +6i) exp-[Q/y —0]2152/(2vz)? (A1)

where yj is the guiding center position of the entering electron, tj is
the entrance time, and ¢; is the entrance gyro phase.

The change in Apyj gives a change to the y of each electron,
which in turn gives a change to its orbital frequency between the n-1
and n periodicity units. When it enters the next periodicity unit, the
phase angle of the ith electron is

o=0i t QL/yvz - QLPJ.AP.Li/ZY3Vzm202 (A2)
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Then, in the integral over t and ¢ integral for P1*Jx, we transform
these variables to t* and ¢’, and find that the linear expresion is
given by

Jd3rd3pdt’ P1*Jx = [d3rd3pdt’ Weos(ky+oi-oti)sin(¢i+Qz/yvz)
xcos[ky-o(tisz/vz) +{] exp-[(z+L)/ro]2 (A3)
where { is the phase shift in going across the periodicity unit and

W = Vr[QLe2Erop. 2f0(p.L2,pz,0i)/4m3v;2y3]
T (A4)

x exp-[(Q/y - ©]12(ro/2v2)?

Here, f, is assumed to be distributed uniformly in ¢;. The
trigonometric integral in Eq.(A4) breaks up into several terms which
integrate to zero over phase. The one that does not is

[d31d3pdt’cos2(ky+oi-wt;) sin{ sin[(Q/y-®)z/v,]

Note that had the downward traveling wave provided the
prebunching and the upward wave the extraction, the first factor
above would have been, cos(ky+o;i-otj)cos(-ky+oj-ot;), which would
also integrate to zero over phase. Doing the phase integrals Eq.(A3),
we find that

fd3rd3pdt’ P1*Jx = W sin{ sin[(Q/y-@)L/vq]
(AS5)

x exp-2[(Q/y - ©]2(10/2v2)?

Thus in this contribution to the energy input, there is no resonant
denominator rasied any power. Hence this term is but a small
correction to those calculated in Sec.(3) which typically had

denominators like [(Q/y - @]-2.

19



References:
1. B. Lax, Private communication, October, 1994

2. A. Ganguly, J. Choi and C. Armstrong, IEEE Trans Electron Devices,
February, 1995.

3. R. Fischer, A. Fliflet, W. Manheimer, B. Levush, T. Antonsen, and V.
Granatstein, Phys. Rev. Let. 72, 2395, (1994)

4. R. Fischer, A. Fliflet, W. Manheimer, Phys. Fluids, B5, 2682, (1993)
5. R. Temkin, private communication, January, 1995

6. A. Fliflet, T. Hargreaves, W. Manheimer, R. Fischer, M. Barsanti, B.
Levush and T. Antonsen, Phys. Fluids, B2, 1046, (1990)

7. A. Fliflet, T. Hargreaves, R. Fischer, W. Manheimer, and P.
Sprangle, J. Fusion Energy, 9, 31, (1990)

8. W. D. Fitzgerald, Lincoln Laboratory Journal, Vol 5, No.5 (1992)
9. B. Lax, SPIE Proc. Vol. 2211, p4, (1994)

10. R. Collin, Foundations of Microwave Engineering, p299, McGraw
Hill, 1966

11. J. Vomvoridis, P. Sprangle, and W. Manheimer, In Millimeter and
Infrared Waves, Vol 7, p 487, (1983), K. Button ed.

12. A. Ganguly, G. Park, and C. Armstrong, Phys. Fluids, BS, 1639,
(1993)

13. A. Yariv, Optical Electronics, Chap. 4, Holt, Rinehart and winst‘on,
New York, 1985

14. J. Leseuf, Millimeter Wave Optics, Devices and Systems, p5Ss,
Adam Hilger, Bristol, (1990)

15. J. Doane, Millimeter and Infrared Waves, Vol 13, p 123, (1985),
K. Button, ed.

20



16. J. Doane and C. Moeller, GA Report GA-A21884
21



Acknowledgements

The author would like to thank Achintya Ganguly for a number of
very helpful discussions. He also thanks, Benjamin Lax, John Braud
and Jeffery McCarg of Lincoln Laboratory and John Doane of General
Atomics for a number of useful dicsussions. This work was

supported by ONR.

22



‘"VMAL 0148 _aoumo-mma:w QOUSPIOUI JeWLIOU 9Y) JO OHBWAYOS

——
———l

e ———

e —————
L

._.Dn_._.DO Dn_Z_

e >
T

...s........\g...:.s,...

N, 7

D o

H

23




"VML 0148 peonido-isenb osouoprour anbijqo oy jo onewoyog g

—

e,

1Nd1no

1NdNI

_AA._

4 V

N
0501010\ 01010291010,
Vi

NEY

@,
J&%&r W&%%A

AV

)
N\
\

00
N

~é

%

7
\ 7
NVVI05%101010,51010102910

N N\
N \

H
()

%
9%

1o X

24



1NndLno

@__\

a

N




TOP VIEW

BEAM oy
IN

26

Schematic of the Folded waveguide TWA.
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